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The Brain is a “Multi Organ” structure: Each 

region of the brain has unique 

vulnerabilities to neurotoxins

The most commonly observed study design pitfalls are:

 Looking only where damage is expected

 Failing to assess all populations

Case Study: Neurodegeneration can only be 

observed in locations that are evaluated
Location of neuronal degeneration
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Each of the more than 600 different anatomic populations of the brain has a unique 

profile with regards to toxicity and each element warrants consideration. Each 

population of the brain has different cell types, connectivity, and functionality. Our 

understanding of the brain has been increasing exponentially but we still do not fully 

understand the comprehensive functions of each population or the interactions of all 

the populations. In this study, examining the neurotoxic profiles identified for various 

compounds we find that:

(1) Cells impacted by a neurotoxic compound are rarely widespread and are more 

often in small and specific regions of the brain.

(2) Neurotoxins often affect just one or perhaps several distinct and possibly distant 

regions.

(3) Affected regions can be very small, but functionally significant.

(4) The location of effects is unpredictable based on other pathologic and behavioral 

indicators and even between compounds that share similar chemical structures. 

Although our understanding of the brain is perhaps not as complete as with other 

organs, we do not know of any regions of non-importance. These findings highlight 

the importance of adopting a well-defined safety assessment approach that examines 

all elements of the brain. Based on our research, we find that 50-60 uniformly-spaced 

coronal sections provide a complete, comprehensive sample of the brain’s diverse 

structures.

The assessment of each population within the brain is a foundation 

principle in neurotoxicity assessments. A well-designed approach is 

required to achieve this requirement in an efficient manner. In rats, 

sampling every 350μ-450μ is adequate and translates to ~50-60 evenly 

spaced coronal sections. Conveniently, for any species, sampling the 

same number of levels provides comparable representation. 

A sampling rate of 50-60 levels achieves adequate 

sampling for routine safety assessments.

Brain Length 

(mm)

Interval 

(mm)

Mouse 12 0.20

Rat 21 0.35

Monkey 65 1.08

Dog 75 1.25

Suggested Sampling Rates by Species

Heart ≠ Liver ≠ Kidney ≠ Brain, etc.

≠ ≠≠

Cortex ≠ hippocampus ≠ cerebellum, etc.

Within a major structure like Hippocampus:

CA1 ≠ CA3 ≠ ventral dentate gyrus ≠ dorsal dentate gyrus

Each major region of the brain is comprised of multiple 

and independently vulnerable subpopulations.

There is no “appendix of the brain”. 

Every population/structure warrants consideration

and each must be assessed individually.

Brain

Significantly different populations are present in levels just one mm apart

48 structures seen that are not 

visible 1mm anterior

35 structures seen that are not 

visible 1mm posterior

55 structures seen that are not 

visible 1mm anterior

45 structures seen that are not visible 

1mm posterior

62 structures seen that are not 

visible 1mm anterior 

33 structures seen that are not visible 

1mm posterior

1 2 3 4
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A rat brain is ~21 mm long. This sagittal image of the rat brain shows the location (red lines) of 4 coronal cross 

sections that are depicted below. The cross sections are only 1mm apart, yet there are quite significant changes in the 

structures that could possibly be sampled from one section to the next. Shading indicates structures that “disappear” 

when viewing the next level.

Neurodegeneration is most often confined to specific, small populations for any given toxin

MDMA PCA Domoic acidMeth. Kainic acid

The shading is a depiction of the area in which of these known, prolific neurotoxins causes neurodegeneration. It is normal for neurotoxins to target very 

specific and discrete populations in the brain. Appreciation of the damage caused can only be accomplished by sampling sections containing the appropriate 

population susceptible to the particular neurotoxin. Prior to a full evaluation, 

Within the same “Major” structure, specific 

neurotoxins effect different populations

MPTP:

destroys cells in the VTA and 

substantia nigra (compacta part)

2’-NH2-MPTP:

selectively destroys cells in dorsal raphe

MPTP damages the dopaminergic system while  2’-NH2-MPTP  

damages the serotonergic system 

The neurotoxic profile of a compound is often a poor predictor of 

potential neurotoxicity of compounds of similar class, structure or 

mechanism. All populations must be assessed.
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The location at which neurodegeneration may occur is UNPREDICTABLE. 

All populations must be considered for each compound tested. This example 

highlights the difference in location (and effect) between two similarly 

structured neurotoxins:
Domoic acid destroys cells in the 

pyramidal layer of hippocampus

PCP destroys cells in dorsal 

dentate gyrus

Alcohol destroys cells in ventral 

dentate formation

Coronal slices at these levels (red lines) are depicted below

In a commonly used view of 
hippocampus, ventral structures cannot 
be seen. Alcohol effects would not be 

observable.

A more posterior section allows 
ventral structures to be seen

Assessing a major division of the brain requires sampling from individual 

populations within that region. This example depicts the effects of 3 

compounds that impact different populations within Hippocampus:

In this study, researchers anticipated, looked for 

and found that D-amphetamine destroys cells in 

parietal cortex and somatosensory barrel field 

cortex.

While the positive findings were correct, the 

conclusion was incomplete. 

Another group of researchers looked elsewhere and 

confirmed that D-amphetamine destroys cells in 

parietal cortex and somatosensory barrel field 

cortex as well as the frontal cortex, piriform cortex, 

hippocampus, caudate putamen, VPL of thalamus, 

and (not shown): tenia tecta, septum and other 

thalamic nuclei

Study #1:
A limited area of cell death was witnessed

Study #2:
Further evidence of cell death was observed

Adapted from Belcher, O’Dell, Marshall (2005) 
Neuropsychopharmacology

Adapted from Bowyer et al. (2005) Brain Research

Lesson: Neurotoxicity can occur in unexpected locations. 

Look everywhere-not just where expected.

Two separate studies evaluated D-amphetamine for neurodegeneration. 

Neurodegeneration was missed in the first study since only expected areas 

of damage were evaluated

Different organs are of course considered independently 

during routine toxicity assessments

As with other many organs, it is appropriate to independently 

assess major structures for unique vulnerabilities.

In the brain, it is important to appreciate that 

neurodegeneration is more likely to occur in a specific 

subpopulation than an entire major structure.

Arteries ≠ valves ≠ chambers, etc.

Heart

Yields ~60 

evenly 

spaced 

coronal 

sections

For more information about neurotoxicity study design principles, a detailed 
presentation may be found @ 

http://www.nsalabs.com/Presentations/neurotox_study_design.zip

http://www.nsalabs.com/Presentations/neurotox_study_design.zip
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