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The Time Course of Neuronal Degeneration Assessing Neurotoxicity at the Wrong Time Can 
is Usually ~2-4 Days Post-administration Should Guide the Timing of Assessment

Study 1: C57BL/6 and BALB/c 
mice did NOT exhibit excitotoxic cell 

Study 2:      C57Bl/6J exhibited 
extensive cell death in limbic 

Lead to False-Negative Results
ExampleWith the burgeoning number of neuroactive compounds being created, be they drugs or 

chemicals introduced into the environment, it is vital to public health that adequate 
means of assessing neurotoxicity are utilized. Fortunately, new technologies are not 
required as there is a wealth of information and tools embedded in the history of

The evidence of cell death is a transient 
event in the brain. Unlike other organs, it is 

Cell death in known neurotoxins has been found to vary between 
compounds, but overlap significantly

death in limbic structures at any of 
the time points examined (4, 7, 12, 
20 days post-administration), leading 
to a conclusion that these animals 
were genetically resistant to kainate-

structures at 12 and 24 hrs following 
kainic acid administration, which was 
dramatically attenuated by 3 days 
post-administration. These mice are 
NOT resistant to kainate-induced

required, as there is a wealth of information and tools embedded in the history of 
neuroscience. The fundamental objective measure of neurotoxicity is to measure 
cell death in the brain following administration of the potential toxin. There are 
three elements critical for adequate detection of potential neurotoxicity: 1) schedule of 
sacrifice times following insult or exposure, 2) sampling intervals within the brain, and 3) 
means of detection. Of these, the first is typically not implemented effectively in 

difficult to observe cell death after it has 
occurred because (1) debris from dead and 
dying cells is rapidly cleared from the brain by 
macrophagic microglia and  (2) surviving 
neurons and glia can ‘close ranks’ leaving no is
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toxicology studies and the second needs significant overhaul. 

Although extensively documented in earlier literature, it is generally unappreciated that 
the debris associated with neurodegeneration does not persist indefinitely and is 
cleared away from the nervous tissue. The time course for the degeneration of 
neuronal components was worked out in the course of studies in the 1960s and 70s by

neurons and glia can close ranks  leaving no 
‘empty spaces’ (unless the lesion is huge, of 
course). While the observable evidence is 
transient, the effects of cell death are 
permanent.  c
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neuronal components was worked out in the course of studies in the 1960s and 70s by 
researchers tracing axon pathways in the brain (utilizing deliberately-created lesions and 
varied time-points of sacrifice). From those studies we know there are consistent 
windows of opportunity for witnessing the degeneration of the different neuronal 
components. Evidence of degenerated synaptic terminals appear the earliest and 
disappear the quickest (all within a 2-3 day span); the debris of dendrites and cell bodies 
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Figure legend: Timing profiles of 
neurodegeneration have been described by 
many researchers, however a comparative 
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enis cleared by 5 days post-insult; and axonal debris -persisting the longest- is gone by 7 

days. For forms of insult that result in delayed neurotoxicity (e.g. certain 
organophosphates) the disintegration process is delayed but, once started, follows the 
same time course. If the test animal is sacrificed too soon or too late, the degenerative 
debris is not visible. 

study has not previously been done to our 
knowledge. Here we overlay known timing 
profiles for 10 neurotoxins to illustrate that 
despite variations between compounds, acute 
neurotoxic effects can be observed in the
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The probability of observing damage induced by kainic acid (brown curve)

Disintegration of each Neuronal Element Has 
Predictable Temporal Characteristics

Neurotoxicity study designs have traditionally included dosing regimens of 14 or 28 days 
followed by sacrifice, however, this may not include adequate windows of opportunity for 
observing degeneration in any of the neuronal elements. Today, we can use information 
gleaned from historical studies and implement similar techniques to detect degeneration 
caused by neurotoxins. Here we present degeneration profiles for several known 
neurotoxins and show how essential sacrifice times are for accurate neurotoxicity testing

neurotoxic effects can be observed in the 
same narrow window of time for all of them. Days post‐administration
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The probability of observing damage induced by kainic acid (brown curve) 

peaks around 2 days post-administration and is negligible after 4 days. In the 
first study neurotoxicity was assessed at time points too late to witness the 

damage and the results were incorrectly interpreted. 

Sub-Chronic and Chronic Neurotoxicity TestingPredictable Temporal Characteristics

Temporal Characteristics of Cell Death Following 
Acute Exposure

Subchronic and chronic dosing/exposures are relevant to potential 
new drugs and environmental agents.

Neurotoxic effects after acute dosing are revealed at early time 

neurotoxins and show how essential sacrifice times are for accurate neurotoxicity testing.
Making assessments too early or too late can lead to incorrect answers. 

Until studies have been done to describe the full timing profile of a 
neurotoxin, a given result can only be valid for the time-point assessed.
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The potential neurotoxic affects following repeated sub-chronic and 
chronic dosing/exposure are likely to be broadly distributed over time 
and require a broader range of sacrifice times.

Cellular changes associated with cell death are visible in 
neurons ~2-5 days after exposure to an acute neurotoxin
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Cell 1

Acute Neurotoxicity: all affected 
cells die within a short window of time.

Sub-chronic and Chronic 
Neurotoxicity: cell death is scattered 

across time.
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Following acute neurotoxicity, a general screening staining method such as 
H&E (hematoxylin and eosin) detect pyknotic nuclear changes in neurons 

(condensation of chromatin in the nucleus of a dying cell is represented in this 
cartoon by dark blue-ish nucleus) and karyorrhexis (fragmentation of the 

nucleus is represented here by a blue-ish speckled nucleus) There is a limited

Affected Structures Revealed by Histological Stains

FluoroJade X X X X

TUNEL X

Nissl X

H&E X

p g
Windows of opportunity are expanded by the use of a 

neurodegeneration stain that reveals all parts of the neurons.
Summary of Concepts Gathered from Past Research

All cells vulnerable to a compound tend to begin dying at the same time
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nucleus is represented here by a blue-ish speckled nucleus). There is a limited 
window of opportunity in which to observe these changes.

Many histological staining methods indicate somatic damage. For more information and complete references please see:This cell death pattern begins within 1-5 days after acute administration
The peak observation opportunity for cell death is 2-5 days after dosing
By 5-10 days, no evidence exists that cell death occurred

Decreased evidence of neurotoxicity (fewer observables) at any given 
time point under repeated dosing conditions requires a wider range of 

sacrifice times as well as a means of detection that captures all elements 
of the neuron (e.g., amino cupric silver, FluoroJade).

Many histological staining methods indicate somatic damage.
Neurodegeneration stains (e.g.,amino cupric silver or FluoroJade) can detect 

pathological changes involving all elements of the neuron. 
Neurodegeneration stains provide a longer window of opportunity to view 

death of the neuron.

For more information and complete references, please see: 
http://www.nsalabs.com/sfn07
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